If $a_0 + a_1 + a_2 + \dots + a_k = 0$, show that

$$\lim_{n \to \infty} \left(a_0 \sqrt{n} + a_1 \sqrt{n+1} + a_2 \sqrt{n+2} + \dots + a_k \sqrt{n+k} \right) = 0$$

If you don't see how to prove this, try the problem-solving strategy of using analogy (see page 71). Try the special cases k = 1 and k = 2 first. If you can see how to prove the assertion for these cases, then you will probably see how to prove it in general.

Solution

Factor out \sqrt{n} .

$$\lim_{n \to \infty} \sqrt{n} \left(a_0 + a_1 \frac{\sqrt{n+1}}{\sqrt{n}} + a_2 \frac{\sqrt{n+2}}{\sqrt{n}} + \dots + a_k \frac{\sqrt{n+k}}{\sqrt{n}} \right)$$

Combine the square roots and split the fractions up.

$$\lim_{n \to \infty} \sqrt{n} \left(a_0 + a_1 \sqrt{1 + \frac{1}{n}} + a_2 \sqrt{1 + \frac{2}{n}} + \dots + a_k \sqrt{1 + \frac{k}{n}} \right)$$

Because $a_0 + a_1 + a_2 + \cdots + a_k = 0$, what we have here is $\infty \cdot 0$ as $n \to \infty$. Change this to the 0/0 indeterminate form.

$$\lim_{n \to \infty} \frac{a_0 + a_1 \sqrt{1 + \frac{1}{n}} + a_2 \sqrt{1 + \frac{2}{n}} + \dots + a_k \sqrt{1 + \frac{k}{n}}}{\frac{1}{\sqrt{n}}}$$

Now apply L'Hôpital's rule.

$$\lim_{n \to \infty} \frac{a_1 \cdot \frac{1}{2} \left(1 + \frac{1}{n}\right)^{-1/2} \left(-\frac{1}{n^2}\right) + a_2 \cdot \frac{1}{2} \left(1 + \frac{2}{n}\right)^{-1/2} \left(-\frac{2}{n^2}\right) + \dots + a_k \cdot \frac{1}{2} \left(1 + \frac{k}{n}\right)^{-1/2} \left(-\frac{k}{n^2}\right)}{-\frac{1}{2} n^{-3/2}}$$

All the minus signs and 1/2's cancel out.

$$\lim_{n \to \infty} n^{3/2} \left[a_1 \left(1 + \frac{1}{n} \right)^{-1/2} \left(\frac{1}{n^2} \right) + a_2 \left(1 + \frac{2}{n} \right)^{-1/2} \left(\frac{2}{n^2} \right) + \dots + a_k \left(1 + \frac{k}{n} \right)^{-1/2} \left(\frac{k}{n^2} \right) \right]$$

Distribute the $n^{3/2}$ to every term.

$$\lim_{n \to \infty} \left(\frac{a_1}{\sqrt{1 + \frac{1}{n}}\sqrt{n}} + \frac{a_2}{\sqrt{1 + \frac{2}{n}}\sqrt{n}} + \dots + \frac{a_k}{\sqrt{1 + \frac{k}{n}}\sqrt{n}} \right)$$

Combine the square roots.

$$\lim_{n \to \infty} \left(\frac{a_1}{\sqrt{n+1}} + \frac{a_2}{\sqrt{n+2}} + \dots + \frac{a_k}{\sqrt{n+k}} \right)$$

As n goes to infinity, every term goes to 0. Therefore,

$$\lim_{n \to \infty} \left(a_0 \sqrt{n} + a_1 \sqrt{n+1} + a_2 \sqrt{n+2} + \dots + a_k \sqrt{n+k} \right) = 0.$$